Boundary condition independence of molecular dynamics simulations of planar elongational flow.

نویسندگان

  • Federico Frascoli
  • B D Todd
  • Debra J Searles
چکیده

The simulation of liquid systems in a nonequilibrium steady state under planar elongational flow (PEF) for indefinite time is possible only with the use of the so-called Kraynik-Reinelt (KR) periodic boundary conditions (PBCs) on the simulation cell. These conditions admit a vast range of implementation parameters, which regulate how the unit lattice is deformed under elongation and periodically remapped onto itself. Clearly, nonequilibrium properties of homogeneous systems in a steady state have to be independent of the boundary conditions imposed on the unit cell. In order to confirm the independence of measurable properties of a system under PEF from the particular set of periodic boundary conditions, we compute the Lyapunov spectra, apply the conjugate pairing rule, and carefully analyze the so-called unpaired exponents for an atomic fluid of various sizes and state points. We further compute the elongational viscosity for various implementations of boundary conditions. All our results confirm the independence from KR PBCs for the dynamics of phase-space trajectories and for the transport coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A proper approach for nonequilibrium molecular dynamics simulations of planar elongational flow.

We present nonequilibrium molecular dynamics simulations of planar elongational flow (PEF) by an algorithm proposed by Tuckerman et al. [J. Chem. Phys. 106, 5615 (1997)] and theoretically elaborated by Edwards and Dressler [J. Non-Newtonian, Fluid Mech. 96, 163 (2001)], which we shall call the proper-SLLOD algorithm, or p-SLLOD for short. [For background on names of algorithms see W. G. Hoover,...

متن کامل

Molecular dynamics simulation of planar elongational flow at constant pressure and constant temperature.

Molecular dynamics simulations of liquid systems under planar elongational flow have mainly been performed in the NVT ensemble. However, in most material processing techniques and common experimental settings, at least one surface of the fluid is kept in contact with the atmosphere, thus maintaining the sample in the NpT ensemble. For this reason, an implementation of the Nose-Hoover integral-f...

متن کامل

Coarse-grained molecular dynamics study of block copolymer/nanoparticle composites under elongational flow.

Symmetric diblock copolymer/nanoparticle (NP) systems under planar elongational flow have been modeled and simulated using coarse-grained nonequilibrium molecular dynamics. The aim of our present study is to understand how the dispersion of NPs in a block copolymer system is influenced by elongational flow and how the presence of NPs changes the rheology and flow-induced morphology transition i...

متن کامل

Planar Molecular Dynamics Simulation of Au Clusters in Pushing Process

Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...

متن کامل

Homogeneous non-equilibrium molecular dynamics simulations of viscous flow: techniques and applications

We provide a review of the literature for non-equilibrium molecular dynamics (NEMD) simulations of homogeneous fluids. Our review focuses on techniques for simulations of shear and elongational flows in viscous fluids and covers the formulation and application of NEMD algorithms for atomic and molecular fluids. We provide a set of expositions that can be effectively used as guidelines to formul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 75 6 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2007